There are five types of program rules used by TRIM:
· National

· Array

· State

· StateArray

· VariableList

A National rule contains a single numeric value that applies to all states, while State rules contain a value for each state. An Array rule, like a National Rule, is applied to all states, but instead of containing just a single value it contains multiple values. Similiarly, StateArray rules contain multiple values for each state. A VariableList rule, rather than containing numeric values, contains the names of one or more variables which are to be used by the simulation for a specific purpose. For all rule types, their description in the dictionary should explain how the simulation uses the rule.

Allocating space for the program rule values

In order for the C++ code to use a program rule, it must first define a location to hold the rule’s value. This is done in the header file as part of the declaration of member variables of the class which uses the rule. The form of the declaration varies depending upon the rule type. For example, suppose that in the TANF module we wanted to use the following rules in the class CTANFIncome:

· SimulationMode (a national rule)

· PovertyGuideline (an array rule)

· IncomeTest (a state rule)
· NeedStandard (a StateArray rule)

· EarnedIncome (a variable list rule)

When declaring the member variables of the CTANFIncome, the following statements must be included:

int SimulationMode;

int PovertyGuideline [TF_MAX_BRACKET];

int IncomeTest [56];

int NeedStandard [TF_MAX_STATE_BRACKET] [56];

CVarInstPackager *pEarnedIncome;
Note the following:

· The variable name is the same as the corresponding rule name (with the exception that the variable corresponding to a VariableList rule is prefixed with a “p” since it is actually a pointer).
· Since a national rule can contain only one value, the corresponding variable is a scalar variable.

· Since array, state, and statearray rules contain multiple values, the corresponding variable is an array. Array rules are dimensioned using a macro variable defined for the module (in this case the macro variable is named TF_MAX_BRACKET). For State rules, the array is dimensioned to 56 (one value for each of the 50 states, plus one for DC, plus one for each of the 5 territories). StateArray rules are dimensioned as 2-dimensional arrays using another module-specific macro variable (in this case TF_MAX_STATE_BRACKET) and 56. If a new array or state-array rule is being added with larger dimensions than the current value of the corresponding macro variable, be sure to increase the value of the macro variable, but make sure that it does not exceed the value of the system-level macro variable MAX_BRACKET_SIZE (currently 60).
· VariableList rules are handled by a “variable instruction packager” object, so at this point all that is required is that a pointer to such an object be created.
· The variables corresponding to the national, array, state, and StateArray rules are declared as “int” because the corresponding rule will only contain integer values. If a rule could contain non-integer values (i.e. decimal digits) the corresponding variable should be declared as “float”.
Obtaining program rule values from the database

Once a variable has been declared to hold a rule’s value(s), code must be added to read the value(s) from the database and store them in the variable. This is done by adding a call to an “RFX” function in the class’s appropriate “List…” function (“ListNationalInst” for national rules, “ListBracketInst” for array rules, “ListStateInst” for state rules, “ListStateBracketInst” for statearry rules, and “ListVarInst” for variable-list rules). For example, the rules we used above would be handled as follows:
Void CTANFIncome::ListNationalInst () {

…

RFX_Int (“SimulationMode”,SimulationMode);

}

Void CTANFIncome::ListBracketInst () {

…

RFX_Int (“PovertyGuideline”, PovertyGuideline[TF_MAX_BRACKET – 1]);

}

Void CTANFIncome::ListStateInst () {

…

RFX_Int (“IncomeTest”, IncomeTest[55]);

}

Void CTANFIncome::ListStateBracketInst () {

…

RFX_Int (“NeedStandard”, NeedStandard [TF_MAX_STATE_BRACKET – 1][55]);

}

Void CTANFIncome::ListVarInst() {
…

RFX_Param(“EarnedIncome”,pEarnedIncome);

}

 Note the following:
· The “RFX…” function is passed the name of the rule (in double quotes) followed by the name of the C++ variable that will contain the value(s) of that rule. The second argument varies depending upon the rule type. For national rules, just pass the name of the corresponding scalar variable.. For array, state, and statearray rules, pass the name of the corresponding array but with subscripts that point to the last position in that array. For variable list rules, pass the pointer to the “CVarInstPackager” object created for that rule.

· For national, array, state, and statearray rules, the “RFX” function used is “RFX_Int” if the corresponding variable is of type “int”, and “RFX_Single” if type “float”. For VariableList rules, “RFX_Param” is always used.

· For VariableList rules, ListVarInst() must call RFX_Param(...) for the variable list rules in alphabetical order. Otherwise, the rules that are out of order do not get read and the code bombs.

One final step must be performed for multiple-value rules (i.e. array, state, and statearray). For these rules, the “List…” functions only access one value at a time, and place it at the end of the array. Therefore, a line must be added to the appropriate “Move…” function (“MoveBracketFields” for array rules, “MoveStateFields” for state rules, and “MoveStateBracketFileds” for StateArray rules), which will “move” the value from the end of the array to its proper place in the array. The argument(s) passed to the “Move…” function indicates the proper position in the array for the value. For example, the rules we used above would be handled as follows:

void CTANFIncome::MoveBracketFields (int BracketNumber) {
…
 PovertyGuideline[BracketNumber] = PovertyGuideline [TF_MAX_BRACKET - 1];

}

void CTANFIncome::MoveStateFields (int StateNumber) {
…
 IncomeTest[StateNumber] = IncomeTest [55];

}

void CTANFIncome::MoveStateBracketFields (int StateNumber, int BracketNumber) {

…
 NeedStandard[BracketNumber][StateNumber] =
 NeedStandard [TF_MAX_STATE_BRACKET - 1][55];

}

It is extremely important that the arrays to hold Array and StateArray rules are properly dimensioned. If they are dimensioned to less than the maximum value that the “sequence” field has in the corresponding CTD table, the “holding area” passed to the ListBracketInst or ListStateBracketInst function will be overwritten with the invalid values from the missing sequences. Although this problem has sometimes been avoided by creating the array with one more element than it needs (but still less than the maximum value of “sequence”) and using that as a “holding” area, properly dimensioning the array as described above is better. Furthermore, this does not solve the problem that such arrays would encounter in the MoveBracketFields or MoveStateBracketFields functions. These functions are called a number of times equal to the number of brackets corresponding to the highest “sequence” value in the table. This means that if a rule is dimensioned to less than the maximum sequence in the table, at some point this function will try to assign a value to an element outside of the array…this is bad (since we don’t know what is actually getting overwritten)! While this problem has sometimes been avoided by performing an explicit check of the value of “bracket” in the “Move…” functions before performing the move, properly dimensioning the array is better.

Using program rule variables
NationalRule variables can be used the same as any other C++ scalar variable, while Array, State, and StateArray rules are used the same as C++ arrays. For example, the rules we used above could be used by the simulation code as follows:

if (SimulationMode == 1) ….

int FamilySize = 3;

int Pov = PovertyGuideline [Size – 1];

int StateNumber = 23;

if (IncomeTest[StateNumber – 1] == 1) …

int UnitSize = 4;

int StateNumber = 12;

int NeedStd = NeedStandard[UnitSize-1][StateNumber-1];

Note the following:

· Rule variables should be treated as read-only. Their values should never be changed!

· Remember that array indices are 0-based, so calculated indices often must be reduced by one.

Using VariableList rules is less straight-forward than using the other types of rules. VariableList rules must be accessed via the member functions of the corresponding CVarInstPackager object. Unlike other rules, the value of a VariableList rule cannot be accessed in the “Initialize” phase (i.e. the processing handled by the class function Initialize. Rather, you must wait until processing has moved to the Simulate function of the CSSim class. In addition, the value of a VariableList rule will vary depending upon which person is the “current” person. The article “Looping Through Persons” gives a complete description of the concept of “Current Person”. For a complete list of member functions, see packager.cpp. Some of the more commonly-used member functions are:
float GetFirstVar() : returns the value (for the current person) of the first variable listed for the rule.

float GetNextVar() : returns the value (for the current person) of the next variable listed for the rule.

BOOL IsLastVar(): returns TRUE if the last Get…Var call referenced the last variable listed for the rule. Note: it looks like this actually returns TRUE if the last Get…Var call went beyond the last variable (it is TRUE when “Current >= GetSize”, however since Current is 0-based and GetSize is 1-based, it is TRUE when Current = Pos-of-last-var +1). This means the last “variable” processed in a loop that depends on this function will have a value of 0 (since the last “variable” is actually no variable). We should check that this doesn’t invalidate the logic in the handful of places where such a loop has been incorporated into the simulation code.

float SumOfVar () : returns the sum of the values (for the current person) of all the variables listed for the rule.
For example, using the above example, the sum (for the current person) of all the variables listed for the EarnedIncome rule could be obtained as follows:

float EarnedIncomeOfPerson = pEarnedIncome->SumOfVar();

The procedure is slightly different when accessing a variable list rule that contains monthly variables. In that case, the above statement would calculate the sum for each of the twelve months, but only return the value for the first month (i.e. month #0). To get the values of months 1-11 (as well as the preferred method for getting the value for month #0) use code like the following:
float EarnedIncomeOfPerson[12];

pEarnedIncome->SumOfVar();
for (int month = 0; month < 12; month++) {

EarnedIncomeOfPerson[month] = (*pEarnedIncome)[month];
}

Note that if a VariableList rule is not assigned any values (i.e. it does not list any variables), the value “0” will be returned by most of the member functions. In order to check if a VariableList rule is empty, code like the following can be used:

pEarnedIncome->GetFirstVar();

if (pEarnedIncome ->IsLastVar()) {

pHousehold->Error = "No variable in EarnedIncome ";

AfxThrowUserException();

}
